A Combined Fourth-order Compact Scheme with an Accelerated Multigrid Method for the Energy Equation in Spherical Polar Coordinates
نویسندگان
چکیده
A higher-order compact scheme is combined with an accelerated multigrid method to solve the energy equation in a spherical polar coordinate system. The steady forced convective heat transfer from a sphere which is under the influence of an external magnetic field is simulated. The convection terms in the energy equation are handled in a comprehensive way avoiding complications in the calculations. The angular variation of the Nusselt number and mean Nusselt number are calculated and compared with recent experimental results. Upon applying the magnetic field, a slight degradation of the heat transfer is found for moderate values of the interaction parameter N, and for high values of N an increase in the heat transfer is observed leading to a nonlinear behavior. The speedy convergence of the solution using the multigrid method and accelerated multigrid method is illustrated.
منابع مشابه
Higher Order Compact Scheme Combined with Multigrid Method for Momentum, Pressure Poisson and Energy Equations in Cylindrical Geometry
A higher-order compact scheme combined with the multigrid method is developed for solving Navier-Stokes equations along with pressure Poisson and energy equations in cylindrical polar coordinates. The convection terms in the momentum and energy equations are handled in an effective manner so as to get the fourth order accurate solutions for the flow past a circular cylinder. The superiority of ...
متن کاملHigh Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...
متن کاملA Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel
Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملIntegrated Fast and High Accuracy Computation of Convection Diffusion Equations Using Multiscale Multigrid Method
We present an explicit sixth order compact finite difference scheme for fast high accuracy numerical solutions of the two dimensional convection diffusion equation with variable coefficients. The sixth order scheme is based on the well-known fourth order compact scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multisca...
متن کامل